机器学习可否能够完成无限太阳能电池的实验

智能制造网 20210316

  • 机器学习
  • 有机太阳能电池
  • 功能材料
大阪大学的研究人员利用机器学习来设计和虚拟测试有机太阳能电池的分子,这可以为可再生能源应用带来更高效率的功能材料。

大阪大学的研究人员利用机器学习来设计和虚拟测试有机太阳能电池的分子,这可以为可再生能源应用带来更高效率的功能材料。

大阪大学的研究人员利用机器学习设计了用于光伏设备的新型聚合物。在虚拟筛选了20多万种候选材料后,他们合成了一种很有前途的材料,并发现其性能与他们的预测一致。这项工作可能会导致功能材料发现方式的革命。

机器学习是一种强大的工具,只要提供足够的实例数据,计算机就可以对即使是复杂的情况进行预测。这对于材料科学中的复杂问题尤其有用,例如设计有机太阳能电池的分子,这可能取决于大量的因素和未知的分子结构。人类需要花费数年的时间来筛选数据以找到潜在的模式,甚至需要更长的时间来测试组成有机太阳能电池所有可能的供体聚合物和受体分子的候选组合。因此,提高太阳能电池的效率以在可再生能源领域具有竞争力的进展一直很缓慢。

现在,大阪大学的研究人员利用机器学习,基于用之前发表的实验研究数据训练算法,筛选了数十万个供体和受体对。尝试了382个供体分子和526个受体分子的所有可能的组合,结果有200932对通过能量转换效率虚拟测试。

为了验证这种方法,研究人员在实验室里合成了一种预测效率很高的聚合物,并进行了测试。发现其特性与预测相符,这让研究人员对他们的方法更有信心。这个项目不仅可以促进高效有机太阳能电池的发展,还可以适应其他功能材料的材料信息学。我们可能会看到这种类型的机器学习,即一个算法可以根据机器学习的预测快速筛选数千甚至数百万个候选分子,并应用于其他领域,如催化剂和功能性聚合物。

声明:转载此文是出于传递更多信息之目的。若有来源标注错误或侵犯了您的合法权益,请与我们联系,我们将及时更正、删除,谢谢。

查看全文

点赞

智能制造网

作者最近更新

  • 一周趣评:两大运营商发布三季度季报;亿纬锂能发布新储能电池
    智能制造网
    2022-10-24
  • 以标准化抢占产业高地 人工智能领域首批国标呼之欲出
    智能制造网
    2022-10-24
  • 借风势,乘风起!用技术“数”写“数字中国”新篇章
    智能制造网
    2022-10-24

期刊订阅

相关推荐

  • 据报告,2024年人工智能在全球物联网市场中规模将达162亿美元

    2019-04-16

  • 无创脑机接口效果已接近脑部植入传感器

    2019-07-05

  • 新型设备用生物传感器预测个体癌症患者的化疗有效性

    2019-07-26

  • 传感器的机器学习

    2019-08-30

评论0条评论

×
私信给智能制造网

点击打开传感搜小程序 - 速览海量产品,精准对接供需

  • 收藏

  • 评论

  • 点赞

  • 分享

收藏文章×

已选择0个收藏夹

新建收藏夹
完成
创建收藏夹 ×
取消 保存

1.点击右上角

2.分享到“朋友圈”或“发送给好友”

×

微信扫一扫,分享到朋友圈

推荐使用浏览器内置分享功能

×

关注微信订阅号

关注微信订阅号,了解更多传感器动态

  • #{faceHtml}

    #{user_name}#{created_at}

    #{content}

    展开

    #{like_count} #{dislike_count} 查看评论 回复

    共#{comment_count}条评论

    加载更多

  • #{ahtml}#{created_at}

    #{content}

    展开

    #{like_count} #{dislike_count} #{reback} 回复

  • #{ahtml}#{created_at}

    #{content}

    展开

    #{like_count} #{dislike_count} 回复

  • 关闭
      广告