首个高空作业机器人多模态感知数据集

天天炫技 20231013

  • SLAM技术

近日,中国科学技术大学工程科学学院机器人与智能装备研究所董二宝副教授课题组发布了首个面向高空作业机器人的开源多模态感知数据集USTC FLICAR。该数据集以“USTC FLICAR: A sensors fusion dataset of LiDAR-inertial-camera for heavy-duty autonomous aerial work robots”为题在线发表于机器人领域知名期刊《The International Journal of Robotics Research》(IJRR)。

高空作业在工农业生产和日常生活中发挥着重要作用,但同时也伴随着较高的作业人员安全风险。推动高空作业的自动化和智能化发展将有助于保障作业人员人身安全,提高作业效率和质量,具有重要的社会价值和经济效益。研究团队展示了将自动驾驶感知系统与斗臂工程车相结合以创建多功能自主高空作业机器人平台的潜力。USTC FLICAR数据集的数据采集系统配备了各种校准良好且时间同步的传感器:四个3D激光雷达、两个立体相机、两个单目相机、惯性测量单元(IMU)和一个GNSS/INS定位系统。同时使用激光跟踪仪记录毫米级精度的地面坐标系下机器人平台实况位置。

研究团队选取代表性高空作业场景,收集了包括一天中的不同时间和天气等多种条件下的数据,以确保高空作业机器人的全天候运行。周围的物体包括高压线、树木、建筑物、道路等。高空作业机器人平台的轨迹包括空中的三维平动、俯仰和旋转。

USTC FLICAR数据集提供激光雷达点云数据、相机图像数据、惯导位置姿态数据、地面真值数据,以及各传感器之间的标定数据。这些数据将支持面向高空作业的同时定位与建图(SLAM)、三维精确重构、多模态融合感知、多传感器标定等任务。

截至目前,USTC FLICAR数据集包含超过1.5TB的数据,包括4万个立体图像对、10万个单目图像、7万帧激光雷达点云以及高频IMU/INS和激光跟踪仪运动测量数据。所有数据都可以以二进制格式(rosbags)和直接可读格式下载,如纯文本格式的数字数据、高质量png格式的原始图像数据。数据中还提供了一些有用的工具和SDK,以便快速使用。未来将继续向数据集添加更多数据,以更充分地应对高空作业机器人面临的技术挑战。找有价值的信息,请记住Byteclicks.com

为提升数据标注效率和质量,研究团队还基于基础AI视觉大模型Segment Anything Model (SAM)进行语义标注,制作了Semantic FLICAR数据集。原始图像数据由SAM模型自动生成全局掩模分割,然后由人类标注者通过感兴趣区域的交互式提示进行协作细化,从而获得精确详细的标注。

USTC FLICAR数据集下载地址:

https://ustc-flicar.github.io

版权声明:除特殊说明外,本站所有文章均为 字节点击 原创内容,采用 BY-NC-SA 知识共享协议。原文链接:https://byteclicks.com/53603.html 转载时请以链接形式标明本文地址。转载本站内容不得用于任何商业目的。本站转载内容版权归原作者所有,文章内容仅代表作者独立观点,不代表字节点击立场。报道中出现的商标、图像版权及专利和其他版权所有的信息属于其合法持有人,只供传递信息之用,非商务用途。如有侵权,请联系 gavin@byteclicks.com。我们将协调给予处理。

查看全文

点赞

天天炫技

作者最近更新

  • ntc温度传感器工作原理是什么
    天天炫技
    2024-07-23
  • 加拿大政府斥资 1.2 亿加元支持本国半导体网络建设,助力芯片制造和商业化
    天天炫技
    2024-07-09
  • 台积电、日月光扩建产能,韩国先进封装产业崛起尚待时机
    天天炫技
    2024-07-05

期刊订阅

相关推荐

  • CeMAT ASIA开幕,旷视AI+物流产品家族首次集体亮相

    2020-11-05

  • SLAM技术将取代GPS?!

    2021-01-19

  • 机器人落地执行的最优方案

    2021-03-05

  • 送餐机器人市场销售额达11.6亿,美团是否会再度崛起?

    2021-04-01

评论0条评论

×
私信给天天炫技

点击打开传感搜小程序 - 速览海量产品,精准对接供需

  • 收藏

  • 评论

  • 点赞

  • 分享

收藏文章×

已选择0个收藏夹

新建收藏夹
完成
创建收藏夹 ×
取消 保存

1.点击右上角

2.分享到“朋友圈”或“发送给好友”

×

微信扫一扫,分享到朋友圈

推荐使用浏览器内置分享功能

×

关注微信订阅号

关注微信订阅号,了解更多传感器动态

  • #{faceHtml}

    #{user_name}#{created_at}

    #{content}

    展开

    #{like_count} #{dislike_count} 查看评论 回复

    共#{comment_count}条评论

    加载更多

  • #{ahtml}#{created_at}

    #{content}

    展开

    #{like_count} #{dislike_count} #{reback} 回复

  • #{ahtml}#{created_at}

    #{content}

    展开

    #{like_count} #{dislike_count} 回复

  • 关闭
      广告