NIST研究新型传感器 显示原子可以接收常见的通信信号

张帅说传感 20190910

  • 量子传感器
  • 原子传感器
  • 相位调制技术
近日,据外媒报道,美国国家标准与技术研究院(NIST)的研究人员已经开发了一种新型传感器,它使用原子来接收常用的通信信号。

  近日,据外媒报道,美国国家标准与技术研究院(NIST)的研究人员已经开发了一种新型传感器,它使用原子来接收常用的通信信号。这种基于原子的接收器具有比传统无线电接收器更小、并在嘈杂环境中工作更好的潜力。


无线通信通常使用称为相移或相位调制的格式,其中信号在时间上相对于彼此移位。在该示例中,通信信号(蓝色)包含相对于参考信号(红色)的周期性反转。这些逆转是看起来像猫耳朵的昙花一现。信息(或数据)在此调制中编码。

  NIST团队使用铯原子以最常见的通信格式接收数字比特(1和0),可用于手机、Wi-Fi和卫星电视,在这种称为相移或相位调制的格式中,无线电信号或其他电磁波随时间相对于彼此移位,信息(或数据)会在此调制中编码。

  “这项研究的重点是向人们证明可以利用原子接收调制信号,”项目负责人说。“这种方法可以在很大的频率范围内工作,虽然数据速率还不是最快的,但还有其他好处,比如在嘈杂的环境中它可能比传统系统更好。”

  如在负责人的新论文中所述,量子传感器基于真实世界的相移方法接收信号,选择19.6千兆赫的传输频率是因为它便于实验,它也可用于未来的无线通信系统。

  NIST团队以前使用相同的基本技术进行成像和测量应用。研究人员使用两种不同颜色的激光器将蒸汽室中的原子制备成高能状态,这些状态具有新的特性,例如对电磁场的极端敏感性,而且电场信号的频率影响原子吸收的光的颜色。


  NIST团队的研究人员调整了镜子,将基于原子的接收器中使用的激光束对准数字调制通信信号。图片来源:NIST

  在新实验中,该团队使用最近开发的基于原子的混频器将输入信号转换为新频率。第一个射频(RF)信号用作参考,第二射频(RF)信号用作调制信号载波,通过探测原子来检测和测量两个信号之间的频率和偏移的差异。

  虽然许多研究人员之前已经证明原子可以接收其他形式的调制信号,但NIST团队是第一个开发可以处理相移的原子混频器的团队。根据编码方案,基于原子的系统每秒接收高达约5兆比特的数据,这接近旧款第三代(3G)手机的速度。

  研究人员还根据误差矢量幅度(EVM)的传统度量方法来测量接收比特流的准确度。EVM将接收信号相位与理想状态进行比较,从而测量调制质量。项目负责人说,NIST实验中的EVM低于10%,这对于第一次演示来说是不错的,这与现场部署的系统的测量结果相当。

  微型激光器和蒸汽电池已经在一些商业设备中使用,例如芯片级原子钟,这表明构建实用的基于原子的通信设备是可行的。

  根据该报告,随着进一步发展,基于原子的接收器可以提供优于传统无线电技术的许多优点。例如,传统的电子设备需要将信号转换为不同的频率进行传输,而基于原子的接收器自动完成这项工作。同时,新型传感器和接收器可以在物理上更小,具有微米级尺寸。此外,基于原子的传感器可能不太容易受到某些类型的干扰和噪声的影响,而且基于原子的混合器还可以精确测量弱电场。

声明:本文由个人作者撰写,版权归原作者或原出处所有,观点仅代表作者本人,不代表传感器专家网立场。如有侵权或者其他问题,请联系我们,本站拥有对此声明的最终解释权。

查看全文

点赞

张帅说传感

解读传感器发展趋势,洞悉传感器产业背后发展逻辑,关注企业、技术、市场、产品等。

作者最近更新

  • 可穿戴传感器被国外保险公司用于优化理赔计算
    张帅说传感
    2020-10-07
  • 为什么造智能传感器,必须要建产业园?
    张帅说传感
    2020-10-04
  • 这款油田钻井钻头传感器可精确测量应变和压力数据
    张帅说传感
    2020-08-11

期刊订阅

相关推荐

  • 德国研究人员研制出氮原子大小的量子传感器

    2019-03-22

  • MIT在芯片上打造量子传感器 或将取代GPS

    2019-10-30

  • 自行车头盔穿戴式脑扫描系统可进行儿童脑发育研究

    2019-11-07

  • 精密测量与量子传感器技术的概念及应用

    2019-12-03

评论0条评论

×
私信给张帅说传感

点击打开传感搜小程序 - 速览海量产品,精准对接供需

  • 收藏

  • 评论

  • 点赞

  • 分享

收藏文章×

已选择0个收藏夹

新建收藏夹
完成
创建收藏夹 ×
取消 保存

1.点击右上角

2.分享到“朋友圈”或“发送给好友”

×

微信扫一扫,分享到朋友圈

推荐使用浏览器内置分享功能

×

关注微信订阅号

关注微信订阅号,了解更多传感器动态

  • #{faceHtml}

    #{user_name}#{created_at}

    #{content}

    展开

    #{like_count} #{dislike_count} 查看评论 回复

    共#{comment_count}条评论

    加载更多

  • #{ahtml}#{created_at}

    #{content}

    展开

    #{like_count} #{dislike_count} #{reback} 回复

  • #{ahtml}#{created_at}

    #{content}

    展开

    #{like_count} #{dislike_count} 回复

  • 关闭
      广告