AI元学习首次进入神经科学

字节点击 20220520

  • 人工智能
  • 医疗数据
  • 脑成像

新加坡国立大学、字节跳动等机构合作的技术成果近期在神经生物学期刊《自然·神经科学》发布,该研究首次将AI元学习(meta learning)方法引入神经科学及医疗领域,可在有限的医疗数据上训练可靠的AI模型,提升基于脑成像的精准医疗效果。

脑成像技术可直接观察大脑在信息处理和应对刺激时的神经化学变化,理论上,基于脑成像的AI模型可应用于预测个人的一些表征特性,从而促进针对个人的精准医疗。尽管已有英国生物银行(UK Biobank)这样的大规模人类神经科学数据集,但在研究临床人群或解决重点神经科学问题时,几十到上百人的小规模数据样本依旧是常态。因此,在精确标注的医疗数据量有限的情况下,如何训练出可靠的AI模型,正成为神经科学和计算机科学领域焦点问题。

研究者们提出,使用机器学习领域的元学习解决上述难题。

元学习是过去几年最火爆的学习方法之一,其目标是让模型可以在获取已有知识的基础上快速学习新的任务。

研究者通过对先前小样本数据分析发现,个体的认知、心理健康、人口统计学和其他健康属性等表征特性与大脑成像数据之间存在一种内在相关性。基于小样本数据和大数据集之间的这种相关性,研究者提出元匹配(meta-matching)的方法,将大数据集上训练出来的机器学习模型迁移到小数据集上,从而训练出更可靠的模型。

这一新方法已在英国生物银行和人类连接组计划(Human Connectome Project)的数据集上完成测评,较传统方法体现出更高的准确率。

实验显示,这项新的训练框架非常灵活,可与任何机器学习算法相结合,在小规模的数据集上,也可有效训练泛化性能好的AI预测模型。获 取 更多前沿科技 研究 进展访问:https://byteclicks.com

版权声明:除特殊说明外,本站所有文章均为 字节点击 原创内容,采用 BY-NC-SA 知识共享协议。原文链接:https://byteclicks.com/37656.html 转载时请以链接形式标明本文地址。转载本站内容不得用于任何商业目的。本站转载内容版权归原作者所有,文章内容仅代表作者独立观点,不代表字节点击立场。报道中出现的商标、图像版权及专利和其他版权所有的信息属于其合法持有人,只供传递信息之用,非商务用途。如有侵权,请联系 gavin@byteclicks.com。我们将协调给予处理。

赞

查看全文

点赞

字节点击

作者最近更新

  • 德国联邦政府拟制定新版太空战略
    字节点击
    2022-10-26
  • 德联邦教研部资助5000 万欧元用于研究创新抗生素
    字节点击
    2022-10-25
  • 德国科学组织联盟发布“能源危机对科研的影响”的立场声明
    字节点击
    2022-10-25

期刊订阅

相关推荐

  • 传感器应该推进人工智能实现整体进化

    2018-12-07

  • AI结合智能手机传感器 可预测人类压力水平

    2019-07-10

  • 简单的智能玻璃揭示了人工视觉的未来

    2019-07-12

  • 英特尔开发出含800万神经元的类脑芯片系统

    2019-07-18

评论0条评论

×
私信给字节点击

点击打开传感搜小程序 - 速览海量产品,精准对接供需

  • 收藏

  • 评论

  • 点赞

  • 分享

收藏文章×

已选择0个收藏夹

新建收藏夹
完成
创建收藏夹 ×
取消 保存

1.点击右上角

2.分享到“朋友圈”或“发送给好友”

×

微信扫一扫,分享到朋友圈

推荐使用浏览器内置分享功能

×

关注微信订阅号

关注微信订阅号,了解更多传感器动态

  • #{faceHtml}

    #{user_name}#{created_at}

    #{content}

    展开

    #{like_count} #{dislike_count} 查看评论 回复

    共#{comment_count}条评论

    加载更多

  • #{ahtml}#{created_at}

    #{content}

    展开

    #{like_count} #{dislike_count} #{reback} 回复

  • #{ahtml}#{created_at}

    #{content}

    展开

    #{like_count} #{dislike_count} 回复

  • 关闭
      广告