新型超宽谱光电探测器上的研究进展

字节点击 20220709

  • 光电探测器

近日, Science Advances发表了题为“Broadband and photovoltaic THz/IR response in the GaAs-based ratchet photodetector”的研究工作(Sci. Adv. 8, eabn2031 (2022))。该论文提出了一种基于GaAs/AlxGa1-xAs异质结的量子棘轮结构。这种结构综合利用了电泵浦实现的热载流子注入效应、自由载流子吸收和从轻、重空穴带到自旋轨道分裂带的光跃迁等多种吸收机制,突破了界面势垒的限制,实现了从近红外到太赫兹波段(4-300太赫兹)的超宽谱光响应。

A.   量子棘轮探测器结构. B. 探测器能带结构. C. 器件PL光谱. D.探测器微观机制示意图.

近年来,红外(IR)/太赫兹(THz)光电探测器已经引起了极大的关注。然而,设计高性能的宽带红外/太赫兹探测器一直是个巨大的挑战。在宽谱探测器领域,一直是热探测器占据主要地位,但热探测器难以实现高速探测。光子型探测器具有可调节的响应范围、良好的信噪比和非常快的响应速度。量子阱探测器(QWP)响应速度快,灵敏度高,光子响应范围灵活可调,是性能优异的光子型红外/太赫兹光电探测器。但窄带特性使其覆盖波段十分有限。内光发射探测器(IWIP)由于其正入射响应机制、宽谱响应以及可调的截止频率,一直被认为是极具竞争力的宽带红外/太赫兹光电探测器。但其激活能低,导致较大的暗电流,需要在极低的温度(液氦温区)下工作。量子点探测器可以在高温下实现太赫兹探测和正入射响应,但可靠性和可重复性仍然是一个巨大的挑战。光泵浦热空穴效应探测器(OPHED)基于热-冷空穴的能量转移机制进行探测,可以突破了带隙光谱的限制,实现超宽谱的红外/太赫兹探测。其探测波长可调,同时能够抑制暗电流和噪声。然而,依赖于外部光学激励的热空穴注入是太赫兹探测的前置条件,这大大增加了OPHED的复杂性。

A.暗电流随温度变化  B. 暗电流与常用太赫兹探测器对比  C. 零偏压下微观响应机制  D. 量子棘轮探测器光响应谱.

应用物理与计算数学研究所白鹏与上海交通大学张月蘅、沈文忠研究组提出了一种基于GaAs/AlxGa1-xAs量子棘轮新结构的超宽谱光子型探测器。该探测器能实现正入射响应,响应范围覆盖4-300THz,远超其他光子类型的探测器的覆盖范围。此外,该器件即使在零偏置电压下也能产生明显的光电流。其峰值响应率达7.3 A/W,比OPHED高出五个数量级。由于量子棘轮能带结构的不对称性,器件的响应在正负偏压下也表现出明显的差别。在温度低于 77K时,由于量子棘轮效应,探测器表现出明显的整流行为,器件暗电流比现有的光子型探测器低得多,噪声等效功率低至3.5 pW·Hz−1/2,探测率高达2.9 × 1010 Jones,展示出其在高温下工作的潜能。

该项研究中展示了一种新型超宽带太赫兹/红外光电探测器。在无任何光耦合结构设计的情况下,这种成像器件具备很宽的光谱探测范围(4-300THz),快响应速度,低噪声等效功率和高探测率,为发展高温高速的超宽谱光电探测器件奠定了基础。

版权声明:除特殊说明外,本站所有文章均为 字节点击 原创内容,采用 BY-NC-SA 知识共享协议。原文链接:https://byteclicks.com/39450.html 转载时请以链接形式标明本文地址。转载本站内容不得用于任何商业目的。本站转载内容版权归原作者所有,文章内容仅代表作者独立观点,不代表字节点击立场。报道中出现的商标、图像版权及专利和其他版权所有的信息属于其合法持有人,只供传递信息之用,非商务用途。如有侵权,请联系 gavin@byteclicks.com。我们将协调给予处理。

赞

查看全文

点赞

字节点击

作者最近更新

  • 德国联邦政府拟制定新版太空战略
    字节点击
    2022-10-26
  • 德联邦教研部资助5000 万欧元用于研究创新抗生素
    字节点击
    2022-10-25
  • 德国科学组织联盟发布“能源危机对科研的影响”的立场声明
    字节点击
    2022-10-25

期刊订阅

相关推荐

  • 第一个基于芯片的可调谐“涡旋微激光”和检测器

    2020-05-19

  • 芬兰开发出新型光电探测器 量子效率突破理论极限

    2020-08-18

  • 国产红外测温传感器原理是什么?这篇带你看懂!

    2021-03-17

  • 科学家研发原子级超薄材料 可提高各种光技术效率

    2022-04-20

评论0条评论

×
私信给字节点击

点击打开传感搜小程序 - 速览海量产品,精准对接供需

  • 收藏

  • 评论

  • 点赞

  • 分享

收藏文章×

已选择0个收藏夹

新建收藏夹
完成
创建收藏夹 ×
取消 保存

1.点击右上角

2.分享到“朋友圈”或“发送给好友”

×

微信扫一扫,分享到朋友圈

推荐使用浏览器内置分享功能

×

关注微信订阅号

关注微信订阅号,了解更多传感器动态

  • #{faceHtml}

    #{user_name}#{created_at}

    #{content}

    展开

    #{like_count} #{dislike_count} 查看评论 回复

    共#{comment_count}条评论

    加载更多

  • #{ahtml}#{created_at}

    #{content}

    展开

    #{like_count} #{dislike_count} #{reback} 回复

  • #{ahtml}#{created_at}

    #{content}

    展开

    #{like_count} #{dislike_count} 回复

  • 关闭
      广告