用于室内智能空气质量监测的智能建筑
插图:© IoT For All --> 数字化转型本身并不那么令人兴奋,也无法激励人们,除非它与一个更宏大的目标相关联。后疫情时代,当员工仍在犹豫是否返回办公室、送孩子上学或前往他们喜爱的旅行目的地时,办公楼、教育机构和机场正受到对最高性能标准的严格审视。这些场所的健康状况和室内空气质量正受到高度关注。智能空气质量监测就是一种有帮助的解决方案。在气候变化和温室气体排放的背景下,每一位全球公民都需要进行新的、前沿的思考,以推动能够减少对环境和气候变化影响的可持续性发展。“室内空气质量在建筑使用者整体健康和幸福感以及环境方面扮演着重要角色。”-Waylay点击推文Hyperaware智能建筑:健康绿色建筑和室内空气质量办公室空间面临的挑战随着办公室员工和租户带着高期望重返建筑场所,建筑业主、房东以及员工健康与安全官员必须提供足够的措施和透明度,以打造清洁健康的建筑环境,并且需要迅速响应住户的请求。美国绿色建筑委员会(US Green Building Council)、美国环保署(EPA)以及LEEDS机构已经联合制定了一套通用的室内空气质量标准,这些标准由以下关键参数进行规范:CO2:空气中的一种自然化合物,室外平均浓度为300-400ppm,室内浓度更高。超过900ppm即可被认为不健康。未来智能建筑应保持CO2浓度接近600ppm。CO:一氧化碳是一种无色无味的致命气体,是室内环境中最危险的化合物之一。美国国家职业安全与健康研究所(NIOSH)建议八小时工作日的暴露上限为35ppm。VOC:挥发性有机化合物是我们日常生活中许多产品中常见的化学物质。它们可能刺激眼睛、鼻子和喉咙,引起呼吸困难。许多常见的建筑材料,包括地毯、实木地板、家具装饰甚至大理石表面都会释放VOC。PM2.5:颗粒物是一种危险的污染形式,因为其颗粒大小(直径2.5微米或更小)极小,能够进入肺部,造成许多不良影响。其阈限值为25 μg/m³。解决方案指南LEED提供了一种框架,用于打造健康、高效、节省碳排放和成本的绿色建筑。它们在应对健康建筑、气候变化危机和实现ESG目标方面至关重要。美国供暖、制冷与空调工程师学会(ASHRAE)致力于推动建筑的供暖、制冷和通风设计。这两个框架在我们设计、运营和维护未来的智能建筑以及今天通过物联网传感器进行改造升级的建筑中发挥着重要作用。让我们来看一个如何基于建筑的使用情况,自动实现LEED认证的室内空气质量的示例。空气质量监测示例我们将构建一个基于建筑使用率和楼层面积的自动化控制功能,以根据ANSI/ASHRAE 62.1 – 2019标准调节室内空气质量。ASHRAE标准的目的是规定最低通风率和其他措施,以提供对人类住户来说可以接受的室内空气质量(IAQ),并最小化对健康造成的不良影响。空间的占用密度和楼层面积决定了所需的呼吸区(Vbz)室外空气流入量。通风区所需的室外新鲜空气量不应低于下述公式计算的值:Vbz = Rp * Pz + Ra * AzAz = 区域楼层面积,通风区的净可占用面积,ft²(m²)Pz = 区域人数,通风区使用期间的人数Rp = 每人所需的室外空气流量Ra = 每单位面积所需的室外空气流量假设Waylay在德克萨斯州奥斯汀有一座办公楼,其楼层如下。第一层:主入口门厅(2,000平方英尺),休息室(1,000平方英尺),办公空间(3,000平方英尺)第二层:休息室(1,000平方英尺),办公空间(3,000平方英尺)办公建筑示例异常情况:假设在一次公司活动中,休息室的占用人数达到了70,当不同组织的员工聚集在一起共进午餐。这一情况触发了每1,000平方英尺最多50人的占用率阈值。该状况持续了1小时(CST时间12点至2点),然后到CST时间3点占用人数降至阈值以下(50)。最终到CST时间6点,占用密度为零。通风率需要在每个阈值跨越时进行调整,并在无占用时设定为最小阈值。此外,为了节能,当休息室无人占用时,必须关闭照明。通风率示例低代码实现方式:建模一个资源“Waylay Austin”。创建资源第一层和第二层作为资源“Waylay Austin”建筑的子资源。建模资源“休息室1”作为第一层的子资源,另一个资源“休息室2”作为第二层的子资源。为资源“休息室1”和“休息室2”创建元数据属性(area_sqft),值为1000。为第一层的资源“门厅1”创建元数据属性(area_sqft),值为2000。编写一条规则,在第一层的“休息室1”中运行,其中“休息室1”的占用传感器发送上表中的数据。首先从占用密度中等(40)开始,不超出任何阈值,并将HVAC控制系统通风率(ventilation_rate)设定为320 cfm。之后,在CST时间12点,占用人数增加到70,超过阈值(50)。此时,我们将通风率提升至470 cfm。向VAV控制器发送命令,以增加该空间的空气供应量470 cfm – 320 cfm = 150 cfm,即增加46%的空气供应。同时,向设施管理人员发出警告(A建筑第一层休息室占用率已超出容量阈值)。然后,当占用人数减少到50时,降低通风率(空气供应)至370 cfm。当占用人数减少到零时,将通风率降低至120 cfm,即减少370 cfm – 120 cfm / 370 cfm = -67.5%。智能空气质量监测的重要性室内空气质量在建筑使用者的整体健康和幸福感以及环境方面扮演着重要角色。建筑中不良的空气质量可能导致许多不良健康问题,如恶心、头痛、呼吸系统疾病(如哮喘)、皮肤刺激,甚至癌症。事实上,人们大约90%的时间是在室内度过的,因此室内空气质量对人们的健康和生产力有显著影响。另一方面,美国能源部的数据表明,建筑占美国所有能源使用的40%,并浪费了其消耗能源的30%。因此,通过严格遵循ANSI/ASHRAE和LEED指南,可以在能源消耗和浪费与室内空气质量之间取得平衡。这一目标可以通过超自动化系统实现,该系统可以实时感知建筑各区域的占用人数、室内空气参数和空气流量,并与IT系统的上下文数据、室外空气质量以及住户反馈实时融合。TweetShareShareEmail 自动化建筑自动化数字转型健康与福祉传感器 --> 自动化建筑自动化数字转型健康与福祉传感器
查看全文
作者最近更新
-
Edge and IoT Predictions For 2024iotforall2023-12-22
评论0条评论