人工智能确实造成真实伤害。我们应关注这点,而不是渲染人类终结的恐慌。
所谓的“人工智能”工具目前在市场上的真正危险并非如人们所想象的那样是消灭人类的潜力,而是错误逮捕、不断扩大的监控网、诽谤和深度伪造的色情内容等现实威胁。这才是人工智能真正的威胁。在许多人工智能公司的炒作之下,它们的技术已经使住房、刑事司法和医疗保健领域的常规歧视、非英语语言中仇恨言论和虚假信息的传播成为可能。此外,算法管理程序使工人遭受普通工资盗窃,并且这些程序正变得越来越普遍。尽管如此,五月份,非营利组织人工智能安全中心发布了一份声明,该声明得到了数百位行业领袖(包括OpenAI首席执行官山姆·阿尔特曼)的联合签署,警告称“人工智能存在灭绝风险”,并称这种风险与核战争和大流行病相当。此前,阿尔特曼曾在国会听证会上暗示,生成式人工智能工具可能会出现“非常严重的问题”。七月,人工智能公司的高管与总统乔·拜登会面,并做出了几项无牙的自愿承诺,以遏制“人工智能最大的风险来源”,暗示存在存在性威胁,而非现实威胁。企业人工智能实验室则通过伪科学研究报告为其立场辩护,这些报告使用恐吓性术语,如“存在风险”,将监管的注意力误导到这些虚构的情境上。更广泛的公众和监管机构不应落入这种科幻小说式的操作。相反,我们应该关注那些从事同行评审的学者和活动家,他们反对人工智能炒作,以便理解当下人工智能的有害影响。由于“人工智能”这一术语含义模糊,使得我们难以进行清晰的讨论。一方面,它是计算机科学的一个子领域名称。另一方面,它也可以指在该子领域中开发的计算技术,其中大部分现在专注于基于大数据集的模式匹配,以及基于这些模式生成新的媒体内容。最后,在营销文案和创业公司推介文稿中,“人工智能”一词则成了魔法般的“仙女尘埃”,声称可以为你的业务注入强大动力。去年底,随着OpenAI发布ChatGPT(以及微软将其整合到Bing搜索引擎中),文本合成机器成为了最引人注目的人工智能系统。像ChatGPT这样的大型语言模型可以生成流畅且看似连贯的文本,但它们并不理解文本的含义,更不用说具备推理能力了。(声称它们具备理解能力,就是在没有理解的情况下虚构出理解,这纯粹是人工智能支持者出于信仰所做的行为。)这些系统更像是巨大的“魔法8号球”,我们通过将发送给它们的提示框当作问题,使它们的输出看起来像是答案。不幸的是,这种输出看起来如此合理,以至于在没有明确表明其合成来源的情况下,它便成为我们信息生态系统中一种有毒且难以察觉的污染源。我们不仅可能误将合成文本当作可靠信息,而且这些信息还会反映并放大其训练数据中所编码的偏见——在这种情况下,便是互联网上各种形式的偏见。此外,这些合成文本听起来权威十足,尽管它们缺乏对真实来源的引用。这种合成文本的污染持续时间越长,我们的处境就越糟糕,因为寻找可靠来源变得更加困难,即便找到,我们也很难再信任它们。然而,那些推销这项技术的人声称,文本生成系统能够弥补我们社会结构中的各种缺陷:中小学教育中教师的短缺,低收入人群无法获得医疗保健,以及无力聘请律师的人缺乏法律援助,仅举几例。除了无法真正帮助这些有需要的人之外,这项技术的部署实际上还伤害了工人:这些系统依赖于大量训练数据,而这些数据最初是由艺术家和作者创作的,如今却以未支付补偿的方式被窃取。其次,为创建防止人工智能系统最毒害输出的“护栏”而对数据进行标记的工作,是一种重复性高、常常令人痛苦的劳动,由临时工和承包商完成,这些人在全球范围内陷入了工资和工作条件方面的恶性竞争。最后,雇主试图通过自动化来降低成本,解雇原本稳定工作的员工,再以较低的薪资重新雇用他们来修正自动化系统的输出结果。这一点在好莱坞当前的演员和编剧罢工中表现得最为明显,那里的过高地薪酬的电影大亨们试图以一天工资的代价购买永久使用人工智能替代演员的权利,并以临时工的身份零散地聘请编剧来修改由人工智能生成的混乱剧本。人工智能相关政策必须以科学为驱动,并建立在相关研究的基础之上。然而,太多人工智能相关的出版物来自企业实验室,或来自获得不成比例行业资金支持的学术团体。其中很多都是伪科学——它们不可复制、隐藏在商业机密之后,充满炒作,并使用缺乏建构效度(即测试是否真正测量了它声称测量的内容)的评估方法。一些最近的典型案例包括微软研究院发布的一篇155页的预印本论文,题为《人工通用智能的火花:与GPT-4的初步实验》,该论文声称在GPT-4(OpenAI的一个文本生成系统)的输出中发现了“智能”,以及OpenAI自己关于GPT-4的技术报告,其中声称OpenAI系统具有解决不在其训练数据中的新问题的能力。然而,由于OpenAI拒绝提供,甚至不提供这些数据的描述,因此任何人都无法验证这些说法。与此同时,“人工智能末日论者”试图将全球的注意力集中在全能机器可能失控并摧毁人类的幻想上,他们引用的正是这些伪科学内容,而不是关于公司目前在创建人工智能过程中对现实世界造成的真实危害的研究。我们敦促政策制定者,转而依靠那些调查人工智能危害和风险的坚实学术研究——包括将权力委托给自动化系统的危害,这些危害包括数据和计算能力的无监管积累、模型训练和推理的气候成本、对福利国家的破坏、贫民的权力削弱,以及对黑人和原住民家庭执法的加剧。该领域扎实的研究——包括社会科学和理论构建——以及基于这种研究的坚实政策,将把焦点放在受该技术影响的人身上。这是一篇观点与分析文章,作者的观点未必代表《科学美国人》的立场。
查看全文
作者最近更新
-
我们进化的历史可以教会我们人工智能的未来scientific2023-11-11
-
“ChatGPT检测器”以前所未有的准确率识别人工智能生成的论文scientific2023-11-11
-
人工智能需要规则,但谁将拥有制定规则的权力?scientific2023-11-07
评论0条评论