里斯本大学:基于石墨烯的摩擦电多传感器,用于智能纺织品自供电多模态运动传感
在康复治疗、运动训练和健康监测领域,对实时运动追踪的需求日益增长,这凸显了对兼具高精度、低功耗和舒适佩戴特性的可穿戴传感器的迫切需求。摩擦纳米发电机(TENGs)通过将生物力学活动直接转化为电信号,为解决这一需求提供了可行方案,但其应用受限于变形时的机械不稳定性及对有线数据采集的依赖。本文,里斯本大学Helena Alves《 ACS Appl. Electron. Mater》期刊发表名为“Graphene-Based Triboelectric Multi-Sensors for Self-Powered Multimodal Motion Sensing in Smart Textiles”的论文,研究提出一种基于耐用纺织架构的全集成无线摩擦纳米发电传感系统。
该系统采用六枚聚二甲基硅氧烷基传感器,通过石墨烯纳米片(GNP)导电胶增强性能,并经微型蓝牙低功耗(BLE)模块实现多通道实时传输。在测试配方中,20%(质量分数)GNP复合材料在反复加载条件下展现出最佳导电性(约15 Ω/□)与稳定信号输出。集成系统在台式测试中展现出高达37伏的电压输出,并在宽温度范围(10–50 °C)内保持稳定性。通过结合可扩展材料、稳健的传感器设计和低功耗无线通信,本研究为自供电、高保真生物力学监测建立了实用平台。该方案为临床康复和日常健康应用领域开发新一代可穿戴系统开辟了新路径。
2图文导读
图1. (a) Morphology of films with different adhesive-to-graphene ratios, showing increased cracking in formulations with higher GNP content. (b) Sheet resistance of films as a function of GNP concentration, presenting a decreasing trend with increasing GNP content. (c) Step-by-step fabrication process of the triboelectric sensor, detailing material preparation and assembly of the positive and negative layers.
图2. (a) Schematic and real images of the triboelectric device, illustrating the positive (textile) and negative (PDMS) layers, as well as the vertical separation working mode, highlighting charge generation and current flow. (b) Output voltage at 3 Hz under forces ranging from 5 to 40 N, demonstrating an amplitude increase with applied force. (c) Output voltage as a function of active area and connection configuration, showing higher output for larger areas and connections along the longest side (black) compared to the shortest side (red). (d) Output voltage variation with temperature, showing a decrease from 90 to 70 V. (e) Output voltage response to relative humidity (RH), remaining stable up to 45% RH before significantly decreasing at higher levels. (f) Reversible effect of RH on output voltage over multiple humidity levels.
图3. (a) Diagram of the sensor-integrated shirt, showing triboelectric sensor placement (green, orange, blue), conductive paths, and communication module location. (b) Interior view of the shirt highlighting conductive connections and sensor deposition sites. (c) Exterior view of the sleeve with the negative sensor components marked in orange. (d) Circuit diagram of the communication module, showing the signal conditioning stage (blue) with impedance matching and noise reduction, and the wireless module (green) with Bluetooth Low Energy capabilities.
图4. Illustration of biomechanical motion and associated signal responses from three sensor channels, elbow (green), armpit (orange), and wrist/hip (blue), for different body movements: (a) elbow elevation with a flexed arm, (b) arm elevation (jumping jack motion), (c) arm flexion away from the torso, and (d) arm flexion against the torso.
3小结
综上所述,本研究成功开发出一种可穿戴式多传感器摩擦电系统,能够实现多关节的实时运动追踪。通过将基于聚二甲基硅氧烷(PDMS)的摩擦电层与石墨烯增强型导电粘合剂集成,该系统在电性能、柔韧性和耐久性之间实现了稳健平衡。优化的Gr20配方在保持柔韧性的同时实现了低面电阻(约15 Ω/□),台式测试证实其在40 N施加负载下可输出高达37 V的电压。该系统通过定制信号调理电路,实现了六个传感通道的稳定无线传输。尽管纺织集成配置中观察到信号衰减现象(特定布局下衰减达60%),系统性分析揭示了根本原因,并提出电极几何优化与封装技术等实用缓解策略。值得注意的是,该装置不仅作为高保真运动传感器运作,更展现出能量采集能力——在10 N负载下实现约7μW功率输出,为自维持运行开辟了路径。这些突破性进展共同彰显了石墨烯基摩擦电系统在可穿戴医疗、康复治疗及人机交互领域的应用潜力。其可扩展设计为未来智能纺织品提供了多功能平台,为实现自主、节能的生物力学监测开辟了新路径。
文献:
https://doi.org/10.1021/acsaelm.5c01519
来源:材料分析与应用
查看全文
评论0条评论