一步完成蛋白和配体配对 深度学习模型筛查新药快千倍

字节点击 20220715

  • 深度学习模型
  • 药物发现
  • 蛋白质配体结合

据美国麻省理工学院(MIT)官网12日报道,该校科学家开发出一款名为EquiBind的几何深度学习模型,其将类药物分子与蛋白配对的效率比现有最快的计算分子配对模型QuickVina2-W快1200倍。相关研究已经提交预印本服务器,并将提交给国际机器学习大会。

在药物开发之前,研究人员必须找到有潜力的类药物分子,这些分子可以与某些蛋白质靶点正确结合或“对接”——这一过程被称为药物发现。类药物分子(配体)成功与蛋白质对接后,可以阻止蛋白质发挥功能。如果蛋白质是细菌的一种必需蛋白质,配体就可以杀死细菌,从而保护人体。

目前寻找潜在药物候选分子的计算过程大致如下:大多数最先进的计算模型依赖繁重的候选采样,以及评分、排序和微调等方法,从而让配体和蛋白质之间实现最佳“匹配”。

最新研究主要作者、MIT电气工程和计算机科学系研究生汉尼斯·斯塔克表示,上述传统的配体—蛋白质结合方法就像“尝试将钥匙插入有许多锁孔的锁中”。这种方法需要花费大量时间对每个“锁孔”进行尝试,才能找到最佳匹配。相反,EquiBind仅需一个步骤就可以直接精准预测配体与蛋白质配对的精确位置,这是因为其拥有内置的几何推理能力,可以帮助模型了解并学习分子的基本情况,在遇到新的数据时能够进行概括,以做出更好的预测。

该研究引起了专业人士的兴趣。接力医疗公司首席数据官帕特·沃尔特斯建议其团队在现有的一种用于肺癌、白血病和胃肠道肿瘤的药物和蛋白质上尝试这一最新模型,结果EquiBind取得了成功——而大多数传统的配对方法无法让蛋白和配体成功配对。获 取 更多前沿科技 研究 进展访问:https://byteclicks.com

版权声明:除特殊说明外,本站所有文章均为 字节点击 原创内容,采用 BY-NC-SA 知识共享协议。原文链接:https://byteclicks.com/39548.html 转载时请以链接形式标明本文地址。转载本站内容不得用于任何商业目的。本站转载内容版权归原作者所有,文章内容仅代表作者独立观点,不代表字节点击立场。报道中出现的商标、图像版权及专利和其他版权所有的信息属于其合法持有人,只供传递信息之用,非商务用途。如有侵权,请联系 gavin@byteclicks.com。我们将协调给予处理。

赞

查看全文

点赞

字节点击

作者最近更新

  • 德国联邦政府拟制定新版太空战略
    字节点击
    2022-10-26
  • 德联邦教研部资助5000 万欧元用于研究创新抗生素
    字节点击
    2022-10-25
  • 德国科学组织联盟发布“能源危机对科研的影响”的立场声明
    字节点击
    2022-10-25

期刊订阅

相关推荐

  • 人工智能技术如何在医疗领域掀起浪潮?

    2020-06-19

  • AI算法实现光速级地震监测

    2022-05-12

  • Nvidia:通往混合Quantum-HPC数据中心之路从这里开始

    2022-05-31

  • 智能机器人药物研发实验室首次亮相,或将引领药物研发下一波浪潮

    2022-06-09

评论0条评论

×
私信给字节点击

点击打开传感搜小程序 - 速览海量产品,精准对接供需

  • 收藏

  • 评论

  • 点赞

  • 分享

收藏文章×

已选择0个收藏夹

新建收藏夹
完成
创建收藏夹 ×
取消 保存

1.点击右上角

2.分享到“朋友圈”或“发送给好友”

×

微信扫一扫,分享到朋友圈

推荐使用浏览器内置分享功能

×

关注微信订阅号

关注微信订阅号,了解更多传感器动态

  • #{faceHtml}

    #{user_name}#{created_at}

    #{content}

    展开

    #{like_count} #{dislike_count} 查看评论 回复

    共#{comment_count}条评论

    加载更多

  • #{ahtml}#{created_at}

    #{content}

    展开

    #{like_count} #{dislike_count} #{reback} 回复

  • #{ahtml}#{created_at}

    #{content}

    展开

    #{like_count} #{dislike_count} 回复

  • 关闭
      广告